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Sanada TM, Nguyenkim JD, DeAngelis GC. Representation of
3-D surface orientation by velocity and disparity gradient cues in area
MT. J Neurophysiol 107: 2109–2122, 2012. First published January
4, 2012; doi:10.1152/jn.00578.2011.—Neural coding of the three-
dimensional (3-D) orientation of planar surface patches may be an
important intermediate step in constructing representations of com-
plex 3-D surface structure. Spatial gradients of binocular disparity,
image velocity, and texture provide potent cues to the 3-D orientation
(tilt and slant) of planar surfaces. Previous studies have described
neurons in both dorsal and ventral stream areas that are selective for
surface tilt based on one or more of these gradient cues. However,
relatively little is known about whether single neurons provide con-
sistent information about surface orientation from multiple gradient
cues. Moreover, it is unclear how neural responses to combinations of
surface orientation cues are related to responses to the individual cues.
We measured responses of middle temporal (MT) neurons to random
dot stimuli that simulated planar surfaces at a variety of tilts and
slants. Four cue conditions were tested: disparity, velocity, and texture
gradients alone, as well as all three gradient cues combined. Many
neurons showed robust tuning for surface tilt based on disparity and
velocity gradients, with relatively little selectivity for texture gradi-
ents. Some neurons showed consistent tilt preferences for disparity
and velocity cues, whereas others showed large discrepancies. Re-
sponses to the combined stimulus were generally well described as a
weighted linear sum of responses to the individual cues, even when
disparity and velocity preferences were discrepant. These findings
suggest that area MT contains a rudimentary representation of 3-D
surface orientation based on multiple cues, with single neurons im-
plementing a simple cue integration rule.
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THE VISUAL SYSTEM RECONSTRUCTS three-dimensional (3-D) scene
structure from images projected onto the two retinas. Many
cues, including binocular disparity, relative motion, texture,
shading, and perspective, are used to perceive 3-D structure.
Most complex surfaces can be approximated by combinations
of locally planar surfaces. Thus understanding how planar
surfaces are coded in visual cortex may help reveal how
complex surface representations are constructed. The 3-D ori-
entation of a plane (tilt and slant) can be specified by gradients
of binocular disparity, motion (velocity), or texture. Human
perception of 3-D surface orientation from these cues has been
well studied, and the findings are often well explained by
Bayesian models (Girshick and Banks 2009; Hillis et al. 2004;
Jacobs 1999; Knill 2007; Knill and Saunders 2003).

Physiological studies in macaques have identified neurons
that signal the 3-D orientation of planar surfaces. In the ventral
stream, 3-D orientation tuning has been reported in area V4 for
disparity gradients (Hegde and Van Essen 2005) and in infero-
temporal (IT) cortex for texture and disparity gradients (Liu et
al. 2004). IT neurons also represent surface curvature from
disparity cues (Janssen et al. 1999, 2000). In the dorsal stream,
neurons in the anterior intraparietal (AIP) area exhibit selec-
tivity for 3-D shapes including slanted and curved surfaces
(Srivastava et al. 2009; Verhoef et al. 2010), dorsal medial
superior temporal (MSTd) neurons are selective to 3-D orien-
tation based on velocity gradients (Sugihara et al. 2002), and
caudal intraparietal (CIP) neurons are tuned for the tilt of
planar surfaces defined by perspective cues, texture gradients,
or disparity gradients (Taira et al. 2000; Tsutsui et al. 2001,
2002). Moreover, tilt preferences for disparity and texture
gradients generally match in CIP (Tsutsui et al. 2002).

Another dorsal stream area that may play a role in comput-
ing 3-D surface orientation is the middle temporal (MT) area,
which has previously been implicated in perception of depth
based on disparity and motion cues (Bradley et al. 1998;
Chowdhury and DeAngelis 2008; DeAngelis et al. 1998;
DeAngelis and Newsome 2004; Dodd et al. 2001; Krug et al.
2004; Nadler et al. 2008, 2009; Uka and DeAngelis 2003,
2004, 2006). MT neurons are also selective for the tilt of planar
surfaces based on velocity (Treue and Andersen 1996; Xiao et
al. 1997) and disparity gradients (Nguyenkim and DeAngelis
2003). However, it is not clear whether single MT neurons
show tilt selectivity for both velocity and disparity gradients.
Furthermore, no previous study has examined responses to
combinations of velocity, disparity, and texture gradients. In-
deed, only one study has examined neural responses to com-
binations of 3-D orientation cues, and this involved coding of
disparity gradients and figural perspective cues in area CIP
(Tsutsui et al. 2001). Thus it is unclear how neurons integrate
multiple cues to 3-D orientation. We hypothesize, based on
recent findings in area MSTd (Fetsch et al. 2011; Morgan et al.
2008), that responses to combinations of disparity, velocity,
and texture gradients may be approximated as a weighted
linear sum of individual cue responses.

This study addresses two main questions. First, do single
MT neurons signal planar surface orientation defined by mul-
tiple gradient cues, and how does tilt tuning compare across
cue conditions? Second, can responses of MT neurons to
combinations of gradient cues be predicted by a weighted
linear sum of single-cue responses? We report that many MT
neurons exhibit robust tuning for 3-D surface orientation de-
fined by both disparity and velocity gradients, with relatively
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little selectivity for texture gradients. Moreover, responses to
combinations of these cues are well approximated by a
weighted linear summation model, consistent with predictions
of recent theory (Fetsch et al. 2011; Ma et al. 2006).

MATERIALS AND METHODS

Subjects and apparatus. Two male rhesus monkeys (Macaca mu-
latta) served as subjects in this study. A detailed description of our
methods has appeared previously (DeAngelis and Uka 2003). All
experimental procedures conformed to National Institutes of Health
guidelines and were approved by the Institutional Animal Care and
Use Committee at Washington University and the University Com-
mittee on Animal Resources at the University of Rochester.

Visual stimuli. Three-dimensional visual stimuli were presented to
the monkey using a stereoscopic projection system (Christie Digital
Mirage 2000). The stimulus display subtended 75° � 63° at the
viewing distance of 57 cm. Visual stimuli were generated by an
OpenGL accelerator board (Nvidia, Quadro FX1000) and were
viewed by the monkey through ferroelectric liquid crystal shutters that
were synchronized to the display refresh (100 Hz). There was no
noticeable stereo cross talk with this system because the three-chip
DLP projector has essentially no persistence.

Planar surface orientation in 3-D was specified by random dot
stimuli, and four cue conditions were generated using OpenGL librar-
ies within Visual C�� (Microsoft Visual Studio .Net). Three of the
cue conditions depicted planar surfaces defined by isolated gradients
of texture, horizontal disparity, or velocity. The final cue condition
combined all three gradients in a congruent manner (see Fig. 1B).

In the texture, velocity, and combined conditions, stimuli were
generated in a 3-D virtual workspace using the OpenGL libraries. In
these cases, the resulting images were determined by the placement of
two virtual cameras within the 3-D workspace, to represent the
viewpoints of the left and right eyes of the observer. The two cameras
were positioned precisely according to the location of the eyes relative
to the 3-D coordinate system, with a horizontal separation between the
cameras that was determined by the interocular distance of the subject.
Once the cameras were positioned, OpenGL calculated all of the
appropriate size/density/velocity gradients based on the camera loca-
tions and the 3-D orientation of the imaged surface. Images from the
two virtual cameras were then presented to the left and right eyes
through the shutter glasses. Except where noted below, the visual
stimuli contained random dots that drifted in the preferred direction of
motion of the MT neuron being recorded, to elicit robust responses. In
the 3-D virtual workspace, dot motion was generated as follows. With
no slant applied to the surface (frontoparallel), dots were generated
such that they moved along the surface in the preferred direction of
the neuron. The surface was then rotated in 3-D around a point at the
center of the receptive field (RF), to apply the appropriate slant and tilt
for each particular trial. Note that dots near the center of the stimulus
still move in the neuron’s preferred direction following this rotation,
although dots closer to the edges of the stimuli will have motion
directions (on the screen) that deviate slightly due to the velocity
gradient that accompanies surface slant.

When a surface is rendered in a 3-D OpenGL workspace, multiple
cues to 3-D surface orientation are generally linked. Thus additional
manipulations were required to isolate the individual gradient cues to
3-D surface orientation. For the texture condition, stimuli were pre-
sented as dynamic random dots (i.e., 0% coherence), thereby remov-
ing any velocity gradient information while still robustly activating
neurons. In this condition, square texture elements were used for
which size and density varied smoothly across the surface of the
planar stimulus. Horizontal disparity information was removed by
eliminating the horizontal separation between the two OpenGL cam-
eras (which places the disparity cue in conflict with the texture cue).
In the velocity and disparity conditions, the individual elements of the
random dot pattern were drawn as points rather than small squares. In

this mode, OpenGL renders the dots with constant size (on the screen)
regardless of the location of each point in the 3-D scene; hence, these
stimuli did not include any size or perspective cues. In the disparity
condition (described further below), this manipulation effectively
removes the texture gradient cue. In the Velocity condition, it is also
necessary to counter the density gradient that accompanies an oriented
surface. For this purpose, 20% of the dots were randomly replotted
within the 3-D surface every few video frames, thus limiting the
lifetime of the dots. This dramatically reduces (but does not com-
pletely eliminate) the density gradient in the velocity condition (this
random replotting was not done in the combined condition). Note that
any residual density gradient is not likely to have accounted for much
of the tilt tuning seen in the velocity condition. If MT neurons were
sensitive to density gradients, then they should show strong tilt tuning
in the texture condition, but this condition yielded the weakest tuning
(see RESULTS). Hence, the strong tilt tuning seen in the velocity
condition is very likely attributable to speed gradients and not the
residual density gradients.

It was not possible to isolate the disparity gradient cue when
rendering the planar stimuli in a 3-D OpenGL context. Hence, the
disparity condition was programmed using a different method from
the other conditions. To eliminate the velocity gradient, dots in the
disparity condition were drifted at a constant velocity on the screen (as
opposed to a constant velocity along the oriented 3-D surface). To
achieve this, a set of dot locations was chosen randomly in screen
coordinates, and each dot was then projected (using a ray tracing
procedure) onto an oriented planar 3-D surface. Dots then drifted at a
uniform velocity on the screen (in the neuron’s preferred direction)
and were projected each frame onto the relevant 3-D surface. This
allowed us to generate the disparity gradient that would accompany
each 3-D surface orientation while eliminating the velocity and
texture gradient cues.

Finally, in the combined condition, planar surfaces of various tilts
and slants were rendered in a 3-D OpenGL context using all of the
natural cues including texture, velocity, and disparity gradients. Note
that the gradient of horizontal disparity was computed to simulate a
planar 3-D surface. Because depth and disparity are not related
linearly, a strictly linear gradient of horizontal disparity would de-
scribe a surface that is slightly curved in space, as described previ-
ously (Nguyenkim and DeAngelis 2003). Hence, the stimuli used here
do not contain strictly linear disparity gradients. Because the texture
condition was presented with 0% coherent motion (to eliminate the
velocity gradient), it should be noted that the combined stimulus is not
a simple combination of the three isolated gradient stimuli, since the
combined condition contains coherent motion. However, the texture
cue itself is represented in the same manner in the texture and
combined conditions.

Task and data collection. Monkeys were required to maintain their
conjugate eye position within a 1.5°-diameter fixation window that
was centered at the fixation point. Fixation began 300 ms before
presentation of the random dot stimulus and had to be maintained
throughout the 1.5-s stimulus presentation for the animal to receive a
liquid reward. Only data from successfully completed trials were
analyzed. Movements of both eyes were measured in all experiments
by using eye coils that were sutured to the sclera; eye position signals
were stored to a computer disk at a sampling rate of 250 Hz.

Tungsten microelectrodes were introduced into the cortex through
a transdural guide tube, and area MT was recognized based on the
following criteria: the pattern of gray and white matter transitions
along electrode penetrations, the response properties of single units
and multiunit clusters (direction, speed, and disparity tuning), retinal
topography, the relationship between RF size and eccentricity, and the
subsequent entry into gray matter with response properties typical of
area MST. All data included in this study were taken from portions of
electrode penetrations that were confidently assigned to area MT. Raw
neural signals were amplified and band-pass filtered (500–5,000 Hz)
using conventional electronic equipment. Action potentials of single
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MT units were isolated using a dual voltage-time window discrimi-
nator (Bak Electronics) and time-stamped with a 1-ms resolution. In
addition, raw neural signals were digitized and recorded continuously
to disk using Spike2 software and a Power 1401 data acquisition
system (Cambridge Electronic Design). These raw signals were used
for extracting multiunit activity.

Experimental protocol. The experimental protocol used in this
study is similar to that described by Ngyuenkim and DeAngelis
(2003). One practical difference is that depth variables are specified in
terms of centimeters in the virtual 3-D environment rather than in
degrees of visual angle. This results from the fact that most of the
stimuli were generated in a 3-D OpenGL rendering context, rather
than a 2-D orthographic projection as used by Nguyenkim and
DeAngelis (2003).

The tuning characteristics of each isolated MT neuron were ini-
tially estimated qualitatively using a hand mapping program. Esti-
mates of RF center and size, as well as preferred direction, speed, and
disparity were gathered. Quantitative measurements of each of these
characteristics were then conducted, in separate blocks of trials, as
follows (see also DeAngelis and Uka 2003; Nover et al. 2005; Palanca
and DeAngelis 2003 for details). 1) A depth tuning curve was
measured by presenting random dot stereograms at 8 different depths,
ranging from 20 cm in front of the plane of fixation to 20 cm behind
the plane of fixation, in steps of 5 cm. These depth values are
equivalent to the following binocular disparities (based on an intero-
cular distance of 3.5 cm): �3.80, �2.51, �1.50, �0.68, 0, 0.57, 1.05,
1.46, and 1.83 degrees. 2) A speed tuning curve was measured by
presenting random dot stereograms (at the preferred depth) with
speeds of 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, and 32.0 cm/s. 3) A quantitative
map of the RF was obtained by presenting a small patch of random
dots (�25% of the RF diameter) at 1 of 16 locations on a 4 � 4 grid
that covered the estimated RF location. These mapping stimuli were
presented at the preferred speed and depth. The data were fit with a
2-D Gaussian to estimate the RF center location and size. 4) A
direction tuning curve was next obtained by presenting random dot
stereograms moving in 8 directions of motions, 45° apart, while speed
and depth were optimized. 5) A size tuning curve was then obtained
by presenting moving random dots in circular apertures having sizes
of 0, 1, 2, 4, 8, 16, and 32 cm. Results of this test were used to quantify
the extent (%) of surround inhibition exhibited by each neuron
(DeAngelis and Uka 2003). 6) Tilt tuning curves were then measured
for each neuron. The stimulus set consisted of four different cue
conditions: velocity, disparity, texture, and combined (see Fig. 1B). In
each case, the stimuli depicted 8 different tilts, 45° apart, at a fixed
slant of 65°. In addition, each tilt stimulus was presented at three mean
depths that were chosen to bracket the peak of the depth tuning curve.

Stimulus size was chosen based on the results of the size tuning
curve and quantitative RF mapping. Because we previously found that
tilt tuning in response to disparity gradients was not strongly depen-
dent on surround mechanisms (Nguyenkim and DeAngelis 2003), we
used stimuli somewhat larger than the receptive field of each neuron.
For neurons that displayed clear surround inhibition, stimulus size was
chosen to be twofold larger than the optimal size from the size tuning
curve. If there was no discernible surround inhibition, the visual
stimulus was set to be twofold larger than the classical RF as
measured from the quantitative RF map. In some cases of exception-
ally strong surround inhibition, however, a stimulus twice the optimal
size elicited little or no response from the neuron. In these instances,
stimulus size was reduced until the neuron gave a roughly half-
maximal response.

Data analysis. The response to each stimulus presentation was
quantified as the average firing rate over the 1.5-s stimulus period.
Each stimulus was typically presented five times in blocks of ran-
domly interleaved trials. Tuning curves were constructed by plotting
the mean � SE of the response across repetitions of each stimulus.
Each tilt tuning curve was fit with a wrapped Gaussian function of the
following form:

f (�) � A1 · �e
�2[1�cos(���0)]

�2·� � A2 · e
�2[1�cos(���0�180°)]

�2 � � B
(1)

Because some neurons showed bimodal tilt tuning, Eq. 1 is a sum of
two wrapped Gaussian functions, where � denotes the tilt angle of the
stimulus, �0 is the location of the primary peak, � indicates the
standard deviation of the Gaussian, A1 is the overall amplitude, and B
is the baseline. The second exponential term in the equation can
produce a second peak 180° out of phase with the first, but only if the
parameter A2 is sufficiently large (A2 is bounded between 0 and 1).
The relative widths of the two peaks are determined by the parameter
�, which was bounded between 0 and 3 such that either of the two
peaks could be broader than the other. The best fit of this function to
the data was achieved by minimizing the sum-squared error between
the response of the neuron and the values of the function, using the
constrained minimization tool “lsqcurvefit” in Matlab (The Math-
Works). Each tilt tuning curve was fitted independently across the
different cue conditions and mean depths.

In the above formulation, the two peaks of the wrapped Gaussian
function were constrained to lie 180° apart to reduce correlations
among variables in the fits. This was justified by the observation that
bimodal tuning curves generally showed two peaks that were �180°
apart. To confirm this, a subset of 58 tuning curves that were judged
to be clearly bimodal by eye were also fit with a sum of two wrapped
Gaussians having independent peak locations. For this subset of
tuning curves the mean of the distribution of differences in preferred
tilts (mean � 179°) was not significantly different from 180° (1-
sample t-test, P � 0.603, N � 58). We quantified the extent of
bimodality of tuning curves using the following index:

Bimodal index � 1 �
�Apref � Anull�

Apref � Anull
(2)

where Apref and Anull denote the amplitudes of the primary and
secondary peaks in the fitted curve. With respect to the formulation of
Eq. 1, Apref � A1 and Anull � A1 � A2. When comparing tilt
preferences of a neuron across stimulus conditions (see e.g., Fig. 5),
we classified cells as having bimodal tuning when the bimodal index
was �0.6. In these cases, differences in tilt preferences were com-
puted as the smallest difference between two peaks in different
stimulus conditions. This prevented spurious differences in tilt pref-
erence close to 180° that could arise when tuning was bimodal in two
stimulus conditions but the relative amplitudes of the two peaks
varied.

To quantify the strength of tuning, we equated the average response
of an MT neuron to all mean depths by vertically shifting the
individual tilt tuning curves. We then combined the data across mean
depths to create a single “grand” tilt tuning curve. Note that this
allows tilt tuning to cancel across mean depths when the tilt prefer-
ences differ by close to 180°. Thus neurons with inconsistent tilt
preferences across mean depths will have weak selectivity in the
grand tilt tuning curve (Nguyenkim and DeAngelis 2003), although
this seldom occurs. For each neuron, we quantified strength of tuning
by a tilt discrimination index (TDI):

TDI �
Rmax � Rmin

Rmax � Rmin � 2�SSE � (N � M)
(3)

where Rmax and Rmin denote the mean firing rates of the neuron (from
the grand tuning curve) at the tilt angles that elicited maximal and
minimal responses, respectively. SSE is the sum-squared error around
the mean responses, N is the total number of observations (trials), and
M is the number of distinct tilt values.

To test whether the responses of MT neurons to combinations of tilt
cues can be predicted from the responses to individual cues, we
examined whether the combined response could be well approximated
as a weighted linear sum of individual cue responses:
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rcombined (�) � wvelocityrvelocity (�) � wdisparityrdisparity (�)
� wtexturertexture (�) � C (4)

where � represents stimulus orientation (tilt) and rcombined(�),
rvelocity(�), rdisparity(�), and rtexture(�) denote tilt tuning curves for the
four cue conditions. The mean response across tilts was subtracted
from each of the four tuning curves before fitting such that the model
tries to fit the response modulation in the combined condition based
on the response modulations in the single-cue conditions (see DISCUS-
SION). In Eq. 4, wvelocity, wdisparity, and wtexture denote the weights that
a neuron applies to each of the three cues, and C is a constant free
parameter. Because the stimulus in the texture condition was rendered
with 0% motion coherence (unlike the other conditions), the magni-
tude of the weights for the texture cue may not be easily comparable
to the other cues. However, given that texture weights were found to
be broadly distributed around zero, this does not substantially limit
our conclusions.

To examine how sensitive model predictions were to the presence
of each individual cue, we also modeled combined responses as a
weighted sum of two of the three cues. All combinations of two-cue
models (velocity-disparity, velocity-texture, and disparity-texture)
were tested. The statistical significance of the improvement in fit of
the three-cue model over the two-cue models was assessed using a
sequential F-test. A significant outcome of the sequential F-test (P �
0.05) indicates that the three-cue model fits the data significantly
better than a particular two-cue model.

To test whether nonlinear interactions between different gradient
cues could improve the fits achieved by the model, four nonlinear
terms were added:

rcombined (�) � wvelocityrvelocity (�) � wdisparityrdisparity (�)
� wtexturertexture (�) �wvelocity,texturervelocity (�)rtexture (�)

�wvelocity,disparityrvelocity (�)rdisparity (�)
� wdisparity,texturerdisparity (�)rtexture (�)
�wvelocity,disparity,texturervelocity (�)rdisparity (�)rtexture (�) � C (5)

where wvelocity,disparity, wdisparity,texture, wvelocity,texture, and wvelocity,dis-

parity,texture denote the weights of the nonlinear response terms. Three
of the nonlinear terms correspond to pairwise products of responses to
different cues, and the fourth term is a product of all three cues. A
sequential F-test was again used to compare fits of the nonlinear
model with those of the linear model.

We also compared a nonlinear power law model, without interac-
tion terms (Britten and Heuer 1999), to the models described above,
to assess whether an overall nonlinearity would help account for the
data:

rcombined (�) � �wvelocityrvelocity (�)n � wdisparityrdisparity (�)n�1 � n � C
(6)

where � represents stimulus orientation (tilt) and rcombined(�),
rvelocity(�), and rdisparity(�) denote tilt tuning curves. For this analysis,
we did not include texture responses, since they account for little of
the response in the combined condition. Because the power law model
cannot operate on negative firing rates, the mean response was not
subtracted from the tuning curves for these fits. Note that the goodness
of fit of the power law model was compared with that of the linear and
nonlinear models (Eqs. 4 and 5); to allow a fair comparison, those
models were also fit to responses without mean response subtraction
and without the terms involving the texture cue.

To test for clustering of tilt selectivity, we extracted multiunit (MU)
responses from the digitized raw data and analyzed them in the same
manner as we did for the single-unit (SU) data. MU responses were
extracted from the raw neural signals that were digitized using Spike2
software by setting an amplitude threshold such that the spontaneous
event rate for MU activity was 75 impulses/s greater than the spon-
taneous rate for SU activity. To make the MU signal independent from
the SU activity, each SU spike was removed (off-line) from the MU

event train. The success of this manipulation was confirmed by
computing cross-correlograms between the SU and MU spike trains
(see Chen et al. 2008 and DeAngelis and Newsome 1999 for details).

RESULTS

We recorded from 156 neurons in 2 monkeys and success-
fully maintained single-unit isolation long enough to complete
the experimental protocol for 96 neurons (see MATERIALS AND

METHODS). Three-dimensional orientation selectivity was mea-
sured using random dot stimuli that depicted planar surfaces at
various tilts and slants. Tilt is defined as the axis around which
the plane is rotated away from frontoparallel, and slant is
defined as the amount by which the plane is rotated (Fig. 1A).
Tilt and slant could be specified by isolated gradients of
texture, binocular disparity, or image velocity, and all three
cues could also be presented together in the combined condi-
tion (Fig. 1B). Because tilt tuning for disparity gradients was

Fig. 1. A: schematic illustration of the 3-dimensional (3-D) orientation of
planar surfaces, parameterized by the parameters tilt and slant. Four different
tilts (0°, 90°, 180°, 270°) are shown for each of 3 different slants. Tilt refers
to the axis around which the plane is rotated away from frontoparallel, and
slant defines the amount by which the plane is rotated. B: schematic illustration
of the 4 cue conditions used to measure tilt selectivity. In the texture condition,
the stimulus incorporated gradients of element size and density. The velocity
stimulus was defined by a gradient of speed of dot motion, and the disparity
stimulus was defined by a gradient of horizontal disparity. In the combined
condition, the stimulus contained congruent texture, velocity, and disparity
gradients. Binocular disparities are represented as a red/green anaglyph.
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previously found to be consistent across slants (Nguyenkim
and DeAngelis 2003), we fixed the slant of the stimulus at 65°
for most experiments reported here, except where specifically
noted.

For each neuron, we measured tilt tuning for the four cue
conditions described above. To control for potential artifacts of
mis-centering the stimulus on the RF (Nguyenkim and DeAn-
gelis 2003), we also presented each tilt stimulus at three
different mean depths that were chosen to flank the peak of the
frontoparallel depth tuning curve (see MATERIALS AND METHODS).
Thus 12 tilt tuning curves were obtained for each neuron (4 cue
conditions � 3 mean depths). Example data sets from three
representative neurons are illustrated in Fig. 2. We quantified
the strength of tilt tuning by calculating a tilt discrimination
index (TDI; Eq. 3), which ranges from 0 to 1, with larger
values indicating stronger selectivity. For the neuron in Fig.
2A, there was little tilt selectivity in the texture condition
(TDI � 0.39), moderate tilt selectivity in the disparity condi-
tion (TDI � 0.66), and strong tilt tuning in the velocity
condition (TDI � 0.83). Tilt preferences of this neuron in the
disparity and velocity conditions were well matched, and thus
tilt tuning was also robust and similar in the combined condi-
tion (TDI � 0.72). Within each cue condition, this neuron
exhibited tilt selectivity that was fairly consistent across the
three mean depths tested, suggesting that selectivity was not an
artifact of mis-centering the stimulus on the RF (Nguyenkim
and DeAngelis 2003) (but see Bridge and Cumming 2008).

The example neuron in Fig. 2B shows a qualitatively differ-
ent pattern of results. This neuron shows clear tilt selectivity in
the disparity (TDI � 0.58) and velocity conditions (TDI �
0.73), but the tilt preference differs markedly between these
conditions. Clear tilt tuning is also observed in the combined

condition (TDI � 0.75); however, the tuning is slightly broader
and the tilt preference is similar to the velocity preference but
shifted slightly toward the disparity preference. Again, tilt
tuning was weak in the texture condition (TDI � 0.44). As
discussed further below, some neurons with discrepant tilt
preferences for disparity and velocity cues exhibited tilt tuning
in the combined condition that was dominated by either the
disparity or the velocity cue (like that in Fig. 2B), whereas
other neurons showed combined tuning that was intermediate.

The third example neuron, in Fig. 2C, shows robust tilt
tuning in the velocity (TDI � 0.87) and texture conditions
(TDI � 0.65) but little tuning in the disparity condition (TDI �
0.33). Tuning in the combined condition was robust (TDI �
0.79) and similar to that of the velocity condition. This neuron
showed the strongest tuning for texture gradients that we
observed in the population. Note that the mean firing rate of
this neuron was substantially lower for texture than for other
cues, perhaps because the texture gradient was presented
without coherent motion (0% coherence, see MATERIALS AND

METHODS).
Population summary of tilt selectivity. Using TDI as a metric

of selectivity, we investigated quantitatively how tilt tuning
depends on cue conditions across our population of neurons.
Marginal histograms in Fig. 3 show distributions of TDI for
each of the four cue conditions. Responses of each neuron were
subjected to a two-way ANOVA (tilt � mean depth), and filled
bars in the marginal histograms indicate neurons with signifi-
cant tilt tuning (main effect of tilt, P � 0.05). Mean TDI values
are 0.56, 0.53, 0.43, and 0.38 for the combined, velocity,
disparity, and texture conditions, respectively, with the corre-
sponding percentages of selective neurons being 90.1, 76.0,
70.0, and 58.0%. In terms of conjunctions of selectivities, 59%

Fig. 2. A–C: tilt tuning curves for 3 representative neurons.
Tuning curves at 3 different mean depths (color coded) are
plotted for each of the 4 different stimulus conditions. From
top to bottom, data from the combined, velocity, disparity,
and texture conditions are shown. Solid lines show best fits
of a wrapped Gaussian function. Dashed horizontal line
indicates spontaneous activity. Error bars are SEs of the
mean. Pref, preferred.
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of MT neurons showed significant tilt tuning in the combined,
velocity, and disparity conditions, 15% were selective in only
the combined and velocity conditions, 10% were selective in
only the combined and disparity conditions, and 2% showed
selectivity in only the combined and texture conditions.

We next compared TDI values for the combined condition
with those from each of the single-cue conditions (scatter plots
of Fig. 3). TDI in the velocity condition was strongly correlated
with that in the combined condition (Fig. 3A; r � 0.72, P �
0.001, N � 96). For one-third of the neurons (33/96), TDI was
significantly different between the velocity and combined con-
ditions (bootstrap test, P � 0.05; filled symbols in Fig. 3A),
with the combined TDI being larger for 22/33 neurons. Over-
all, the average TDI for the velocity condition was slightly, but
significantly, less than that for the combined condition (paired
t-test, P � 0.025, N � 96). Note, however, that more data
points are above the unity-slope diagonal in Fig. 3A when TDI
for the velocity condition is low. We separated the neurons into
two groups according to the median TDI in the velocity
condition, and we found that the increase in TDI in the
combined condition was highly significant for the group of
neurons with weaker tilt tuning in the velocity condition
(paired t-test, P � 0.001). In contrast, for the other half of
neurons with strong velocity-based selectivity, mean TDI val-
ues were not significantly different between the combined and
velocity conditions (paired t-test, P � 0.1). This indicates that
the addition of disparity and texture cues to a velocity gradient
stimulus substantially improves tilt selectivity when the veloc-
ity cue by itself does not produce very strong selectivity.

Comparing the combined and disparity conditions, we found
that TDI values were again significantly correlated across
conditions (Fig. 3B; r � 0.52, P � 0.001, N � 96). Moreover,
TDI values in the combined condition were systematically
greater than those for the disparity condition (paired t-test, P �
0.001, N � 96), indicating that the addition of velocity and
texture cues to disparity gradients substantially improved tilt
selectivity. For the texture condition, TDI values were only
marginally correlated with those in the combined condition
(Fig. 3C; r � 0.21, P � 0.038, N � 96), and the average TDI
value was much higher in the combined condition (paired
t-test, P � 0.001).

To examine the possibility that differences in tilt selectivity
across stimulus condition might be confounded with differ-
ences in response strength, Fig. 4 shows TDI plotted as a
function of firing rate (square root transformed to reduce skew
in the distribution). As illustrated by the example neuron of
Fig. 2C, firing rates were generally lower in the texture con-

dition than in the other conditions. However, there was no
significant correlation between TDI and firing rate across all
conditions (P � 0.84, main effect of firing rate, ANCOVA),
and there was no significant interaction between firing rate and
stimulus condition (P � 0.99, ANCOVA), indicating that the
relationship between TDI and firing rate did not differ signif-
icantly across stimulus conditions. Thus it is clear that the
lower average TDI values observed in the texture and disparity
conditions were not simply the result of weaker responses in
these conditions.

Together, these results suggest that tilt selectivity in area MT
increases as multiple cues to surface orientation are combined,
with velocity and disparity gradient cues providing the stron-
gest inputs and texture having a weaker contribution. Cue
combination only fails to improve selectivity when neurons
have very strong tuning for the velocity stimulus by itself,
suggesting that tilt tuning is dominated by velocity gradients
for these neurons. Data from the two monkeys were consistent
(circles and triangles in Fig. 3) and have been combined in
subsequent analyses.

One might expect that neurons with congruent tilt prefer-
ences in the single-cue conditions would contribute most to the
enhancement of TDI values in the combined condition. Indeed,
we found that the difference in TDI between the combined and
velocity conditions was negatively correlated with the absolute
difference in tilt preference between the disparity and velocity
conditions (r � �0.32, P � 0.02, N � 52). Thus neurons with
congruent tilt preferences for disparity and velocity cues
showed the largest increases in TDI in the combined condition
relative to the velocity condition. A similar trend was present

Fig. 3. Summary of the strength of tilt selectivity for
the population of middle temporal area (MT) neu-
rons. Marginal histograms show distributions of the
tilt discrimination index (TDI) for each of the 4 cue
conditions, with filled bars denoting a significant
main effect of tilt (2-way ANOVA, P � 0.05).
A: scatter plot of TDI for the combined vs. velocity
conditions. Neurons with significantly different
TDIs between the 2 cue conditions are plotted as
filled symbols (bootstrap test, P � 0.05). Each
datum represents 1 neuron, and data from monkey J
and monkey M are shown as circles and triangles,
respectively. B: scatter plot of TDI for the combined
vs. disparity conditions. C: scatter plot of TDI for
the combined vs. texture conditions.

Fig. 4. Relationship between tilt selectivity (TDI) and firing rate for each cue
condition. The square root of mean firing rate is plotted on the abscissa to
roughly normalize the distribution of response rates. Stimulus conditions are
represented as different colors.
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for the difference in TDI between the combined and disparity
conditions, but the effect did not quite reach significance (r �
�0.24, P � 0.08, N � 52).

Previously, tilt selectivity based on velocity gradients was
described in MT by Treue and Andersen (1996) and Xiao et al.
(1997), and Xiao et al. reported a robust correlation between
tilt selectivity and surround suppression. In contrast, tilt selec-
tivity based on disparity gradients was not found to correlate
with the strength of surround suppression in a previous study
(Nguyenkim and DeAngelis 2003), and we did not find any
significant correlations between tilt selectivity and surround
suppression in the present study for any of the stimulus
conditions (combined: r � �0.028, P � 0.79; velocity: r �
0.0038, P � 0.97; disparity: r � �0.14, P � 0.18; texture: r �
�0.05, P � 0.63, N � 96). Thus it does not appear that
surround suppression is generally linked to tilt selectivity.
Although the reasons for the difference between our results and
those of Xiao et al. (1997) are not clear, one potentially
relevant methodological difference is that Xiao et al. measured
size tuning curves monocularly, whereas we measured size
tuning using stereoscopic stimuli in our experiment.

Tilt preferences across cue conditions. We now consider the
similarity of tilt preferences across cue conditions. We esti-
mated the tilt preference of each neuron by fitting its tuning
curve with a wrapped Gaussian function (see MATERIALS AND

METHODS). Because a small percentage of neurons show bi-
modal tilt tuning curves with two peaks roughly 180° apart,
responses were fit with the sum of two wrapped Gaussian
functions having peaks that were constrained to lie 180° apart.
To obtain a single tilt preference for each neuron in each cue
condition, tuning curves were fit after averaging responses
across the three mean depths. The tilt preference was defined as
the tilt for which the fitted curve had its largest peak (but see
MATERIALS AND METHODS for calculation of differences in tilt
preferences when tuning is bimodal). Figure 5A compares tilt
preferences for the combined and velocity conditions, with
each symbol representing a neuron that showed significant
tuning in both cue conditions. Because tilt angle is a circular
variable, data points in this scatter plot are constrained to lie

within the dashed lines that define a 180° difference between
tilt preferences for the two cues. There is a strong correlation
between tilt preferences in the combined and velocity condi-
tions (circular correlation coefficient, r � 0.76, P � 0.001,
N � 61), and most cells (72%) have tilt preferences that differ
by �30° between conditions (Fig. 5D). A similar result was
observed for the disparity cue. Tilt preference in the disparity
condition was significantly correlated with that in the com-
bined condition (circular correlation coefficient, r � 0.51, P �
0.001, N � 60), and 57% of cases showed tilt preferences
within 30° (Fig. 5E). In Fig. 5, D and E, the distribution of
differences in tilt preference was significantly different from
uniform (Fig. 5D: Rayleigh test, P � 0.001, N � 61, Fig. 5E:
P � 0.001, N � 60).

Perhaps surprisingly, tilt preferences in the velocity and
disparity conditions were not significantly correlated with each
other (circular correlation coefficient, r � 0.22, P � 0.14, N �
52; Fig. 5C), and the distribution of differences in preferred tilt
between these conditions was not significantly different from
uniform (Fig. 5F; Rayleigh test, P � 0.20, N � 52). Thus,
although tilt preferences in the combined condition were cor-
related with those in the velocity and disparity conditions, there
was no consistent relationship between tilt preferences based
on velocity and disparity alone. In addition, tilt preferences in
the texture condition were not significantly correlated with
those for the other cue conditions (texture-combined: r � 0.13,
P � 0.38 N � 42; texture-velocity: r � 0.03, P � 0.88 N � 39;
texture-disparity: r � 0.12, P � 0.46 N � 37).

To better understand this somewhat puzzling pattern of
results, we further analyzed the relationships between differ-
ences in tilt preference among cue conditions. When the
difference in tilt preference between combined and velocity
conditions is plotted as a function of the difference in prefer-
ence between velocity and disparity conditions (Fig. 6A), three
main groups of cells become apparent: those for which the
combined tilt preference is consistent with both the velocity
and disparity preferences (red symbols), those for which the
combined tilt preference is dominated by velocity (green sym-
bols), and those for which the combined preference is domi-

Fig. 5. Comparison of tilt preferences across stim-
ulus conditions. A: tilt preferences for the velocity
condition are plotted as a function of those for the
combined condition. B: tilt preferences for the
disparity condition are plotted against those for the
combined condition. C: tilt preferences for the
velocity condition are plotted against those mea-
sured in the disparity condition. Solid line indi-
cates the unity-slope diagonal, whereas the 2
dashed diagonal lines represent boundaries corre-
sponding to 180° differences between tilt prefer-
ences. D–F: distributions of differences (	) in tilt
preference between the corresponding cue condi-
tions in A–C are shown as histograms.
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nated by disparity (blue symbols). A complementary pattern of
results is seen when the difference in tilt preference between
combined and disparity conditions is plotted in a similar
fashion (Fig. 6B). These results suggest that when disparity and
velocity preferences for tilt are discrepant, many cells are
dominated by one cue or the other, whereas a minority of
neurons have combined preferences that are truly intermediate
(cyan symbols).

Linear integration of tilt cues. Thus far, we have character-
ized tilt selectivity across cue conditions, but what is the
mathematical rule by which MT neurons integrate multiple
visual cues to represent tilt? Recently, Morgan et al. (2008)
reported that visual and vestibular inputs related to self-motion
are integrated in area MST by weighted linear summation.
Moreover, theoretical studies have suggested that optimal cue
integration can be achieved by linear weighting of inputs by
single neurons (Fetsch et al. 2011; Ma et al. 2006). Thus we
examined whether weighted linear summation could account
for the combined responses to tilt cues. We fitted responses in
the combined condition with a weighted linear sum of re-
sponses in the three single-cue conditions (Eq. 4, see MATERIALS

AND METHODS). Data for all three mean depths were fitted
simultaneously using a single set of parameters. Figure 7

shows fitting results for the same three example neurons that
were shown in Fig. 2. For the cell in Fig. 7A, weights of the
individual cue responses wvelocity, wdisparity, and wtexture were
0.80, 0.74, and �0.98, respectively, and the predicted tuning
curves matched the data well for all three mean depths (R2 �
0.95). Note that the magnitude of the texture weight was large
even though this neuron had little tilt selectivity in the texture
condition. Because of this lack of texture selectivity, there is
little to constrain the texture weight during the fit, and the
resulting texture weight was only marginally different from
zero (P � 0.03). This was the case for many neurons, as
discussed further below. By comparison, wvelocity and wdisparity
were both significantly greater than zero (P � 0.001) for this
neuron. For the neuron in Fig. 7B, which had rather discrepant
tilt preferences for disparity and velocity cues (Fig. 2B),
combined responses are also predicted well by the linear model
(R2 � 0.90), with cue weights wvelocity, wdisparity, and wtexture of
1.46, 0.8, and 0.59, respectively. Finally, for the neuron in Fig.
7C, which had clear tilt tuning in the velocity and texture
conditions, predicted tilt tuning also matched the data well
(R2 � 0.96), with cue weights wvelocity, wdisparity, and wtexture of
0.79, 1.04, and 0.72, respectively. Although the texture and
disparity weights were marginally significant for this neuron,
the confidence intervals on the weights were an order of
magnitude larger for disparity and texture than for velocity.

To quantify the results of the linear model fits, we compared
the predicted tilt preference to the measured tilt preference by
fitting wrapped Gaussian functions to both predicted and mea-
sured responses from the combined condition. Predicted and
measured tilt preferences were strongly correlated (Fig. 8A;
circular correlation coefficient, r � 0.97, P � 0.001, N � 68),
and 98.5% of neurons showed measured and predicted tilt
preferences that differed by �30° (Fig. 8B). Fits of the linear
model were generally quite good, with 69% of cells having R2

values �0.7 (median R2 � 0.80; Fig. 8C).
Although linear model fits were generally quite good across

the population, model fits are expected to be good when tilt
preferences are similar in the disparity and velocity conditions
such that all of the tilt tuning curves are fairly similar. A much
more critical test of the model is to examine fits for neurons
with discrepant tuning for disparity and velocity gradients.
Figure 8D plots the difference in tilt preference between data
and model fits against the difference in tilt preference between
disparity and velocity conditions for the subset of neurons with
significant tuning in both single-cue conditions. We found only
a weak, marginally significant correlation between these vari-
ables (Spearman rank correlation, r � 0.29, P � 0.05, N � 46),
and many cells with large discrepancies between disparity and
velocity tilt preferences show little error in model predictions.
There is a similarly weak correlation between the R2 value of
the model fits and difference in tilt preference between dispar-
ity and velocity conditions (r � �0.29, P � 0.06, N � 46; data
not shown). Thus the linear model is quite successful in
predicting tilt tuning in the combined condition, even when
tuning differs greatly between the disparity and velocity
conditions.

One might argue that any linear model with broad tuning
curves could fit the combined responses well. For example, if
velocity and disparity tuning curves were sinusoidal and out of
phase by 90°, then a weighted sum might fit almost any
combined tuning curve. To assess this possibility, we shuffled

Fig. 6. Tilt preferences in the combined condition tend to be dominated by
disparity or velocity. A: the absolute value of the difference in tilt preference
between the combined and velocity conditions is plotted against the absolute
difference in tilt preference between velocity and disparity conditions. Red
symbols represent cells with similar tilt preferences (within 30°) across all 3
conditions. Green symbols denote cells with similar tilt preferences in the
combined and velocity conditions. Blue symbols denote cells with similar tilt
preferences in the combined and disparity conditions. Cyan symbols represent
cells for which the tilt preferences in the velocity, disparity, and combined
conditions all differ from each other by at least 30°. Gray symbols denote a
handful of neurons that did not fit into any of these groups. B: analogous data
are shown except that the vertical axis now represents the absolute value of the
difference in tilt preference between the combined and disparity conditions.
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data across neurons and refit each cell’s combined responses
with a weighted sum of velocity and disparity tuning curves
that were randomly picked from among all cells in the popu-
lation. The goodness of fit obtained with the shuffled data sets
(mean R2 � 0.35) was significantly lower than the goodness of
fit (mean R2 � 0.75) obtained by the original analysis (paired
t-test, P � 0.0001). Thus the structure of the single-cue tuning
curves for a given neuron is an important factor for predicting
combined responses.

Cue weights. Having established that the linear model pro-
vides an adequate description of combined responses to tilt
cues, we can now use the weights of the linear fits to charac-
terize the relative contributions of disparity, velocity, and

texture cues across our population of neurons. Histograms in
Fig. 9, A–C, show the distributions of velocity, disparity, and
texture weights for 87 neurons. Most neurons showed signifi-
cant weights for velocity (68%; Fig. 9A) and disparity (70%;
Fig. 9B), and virtually all of these weights were positive, as

Fig. 7. Predictions of the linear weighted summation model
are shown for the same 3 example neurons illustrated in
Fig. 2. Each row represents 1 of the 3 mean depths tested
for each neuron. Weights of the individual cues (wvelocity,
wdisparity, wtexture) are 0.80, 0.74, and �0.98, respectively,
for the cell in A, 1.46, 0.80, and 0.59 for the cell in B, and
0.79, 1.04, and 0.72 for the cell in C. Curves represent
model fits.

Fig. 8. Summary of linear model fits. A: comparison of predicted and measured
tilt preferences in the combined condition. Format is the same as in Fig. 5,
A–C. B: distribution of the difference in tilt preferences between measured and
predicted responses for the combined condition. C: histogram of goodness of
fit (R2), with a median value of 0.80. D: the absolute value of the difference in
tilt preference between measured and predicted responses is plotted as a
function of the absolute difference in tilt preference between the velocity and
disparity conditions.

Fig. 9. Summary of cue weights from fits of the linear model. A–C: distribu-
tions of weights are shown for each individual cue. Filled bars indicate weights
that are significantly different from zero. D: disparity weight is plotted against
velocity weight for each neuron. Error bars represent 95% confidence intervals.
Cells are color coded according to the similarity of tilt preferences across
conditions, as defined in Fig. 6. E: disparity vs. texture weights. F: texture vs.
velocity weights.
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expected (filled bars). In contrast, only 15% of cells showed a
weight for the texture cue that was significantly different from
zero (Fig. 9C), and these weights were sometimes negative. Note
that even large texture weights (near �1) were often not signifi-
cant (open bars), indicating that the weak texture selectivity did
not contribute much to combined responses for most neurons.

Relationships of weights across cue conditions are summa-
rized in Fig. 9, D–F. There was no significant correlation
between velocity and disparity weights (Fig. 9D; Spearman’s
rank correlation, r � �0.09, P � 0.93, N � 87). Notably,
neurons with a combined tilt preference that is similar to the
velocity preference (green symbols) tended to have velocity
weights closer to 1 and disparity weights shifted toward zero.
Similarly, cells with a combined tilt preference similar to that
in the disparity condition (blue symbols) tended to have ve-
locity weights closer to zero and disparity weights closer to 1.
This pattern is consistent with the idea that combined responses
of some MT neurons are dominated by the velocity gradient
cue, whereas others are dominated by the disparity gradient cue
(see also Fig. 6). No significant correlations were observed
between disparity weights and texture weights (Fig. 9E; r �
�0.19, P � 0.08, N � 87) or between velocity weights and
texture weights (Fig. 9F; r � 0.14, P � 0.18, N � 87). Note
that the 95% confidence intervals (error bars) on texture
weights are generally much larger than for the other two cues.
These results suggest that either velocity or disparity cues tend
to dominate tilt selectivity in MT, as addressed further below.

Model-based summary of cue contributions. If the texture
cue does not contribute strongly to responses in the combined
condition, then eliminating the texture cue from linear model
fits should have little or no effect. To examine this, we fitted
the data with another weighted linear model in which the
texture weight was eliminated. As shown in Fig. 10A, the
goodness of fit (R2) of the velocity � disparity model was very
similar overall to that of the full model. Only 18% of neurons
showed a significantly worse fit when texture was removed
from the model (solid symbols, sequential F-test, P � 0.05),
and the difference in R2 was relatively small in almost all cases.
Mean values of R2 were 0.76 and 0.72 for the velocity �
disparity � texture and velocity � disparity models, respec-
tively (Fig. 10D, left 2 bars), and this difference was significant
(paired t-test, P � 0.001, N � 74).

By comparison, removing either the disparity or velocity term
from the linear model impairs the predictions to a much greater
extent. When the velocity cue was omitted from the model (dis-
parity � texture model, Fig. 10B), the mean R2 value fell from
0.76 to 0.42, and this difference was highly significant (paired
t-test, P � 0.001, N � 74). Similarly, removing the disparity cue
(velocity � texture model, Fig. 10C) reduced the mean R2 value
to 0.53, an effect that was also highly significant (paired t-test,
P � 0.001, N � 74). As summarized in Fig. 10D, this analysis
demonstrates that linear combinations of velocity and disparity
responses generally provide a good description of tilt tuning in the
combined condition, with relatively little explanatory power
gained by including the texture cue. Overall, the velocity �
texture model produced marginally better fits than the disparity �
texture model (paired t-test, P � 0.04, N � 74), suggesting that
velocity contributes slightly more strongly than disparity overall.

Although responses of many cells are well described by the
simple linear model, those of a minority were not. To explore
whether nonlinear interactions are needed to predict combined

responses for these cells, we compared the goodness of fit
between the linear model and a nonlinear model that included
additional terms consisting of products of velocity, disparity,
and texture responses (see MATERIALS AND METHODS). Although
the nonlinear model has twice as many parameters as the linear
model, it provided significantly better fits for only 14% of
neurons (solid symbols in Fig. 11; sequential F-test, P � 0.05).
Overall, the mean R2 value increased from 0.76 to 0.82 when
the nonlinear terms were added, a difference that was signifi-
cant (paired t-test, P � 0.001). The difference in R2 between
the linear and nonlinear models was not significantly different
(Wilcoxon rank sum test, P � 0.1) for neurons with similar tilt
preferences in the velocity and disparity conditions (red sym-
bols) and neurons with discrepant preferences (blue symbols).
Thus the nonlinear model does not appear to provide a greater
benefit for neurons with mismatched tuning in the velocity and
disparity conditions.

We also considered a nonlinear power law model that does
not involve interactions among responses to the different stim-
ulus conditions (Britten and Heuer 1999). To directly compare
the power law model with the other models, we fitted all
models to the tuning curves without subtracting the mean firing
rate (since the power law model cannot operate on negative
firing rates). In addition, texture responses were excluded from
all models in this comparison, given that texture contributes
little to combined responses overall. Although the power law
model has one more parameter than the linear model, the
average R2 was not significantly different between these two
models (paired t-test, P � 0.11). In contrast, the nonlinear

Fig. 10. Comparison of model fits that incorporate 2 vs. 3 cue weights.
A: goodness of fit (R2) for a 2-cue model including disparity and velocity is
plotted against R2 for the 3-cue model (velocity, disparity, and texture). Filled
symbols indicate neurons for which the 3-cue model fits significantly better
than the 2-cue model (sequential F-test, P � 0.05). B: goodness of fit for a
2-cue model including disparity and texture vs. the 3-cue model. C: goodness
of fit for a 2-cue model including velocity and texture vs. the 3-cue model.
D: mean R2 values for the 3-cue model and each of the 2-cue models. V,
velocity; D, disparity; T, texture.
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model involving interaction terms (Eq. 5) produced an average
R2 value significantly greater than that of the power law model
(paired t-test, P � 0.001).

These analyses indicate that a combination of 3-D surface
orientation cues by MT neurons is reasonably well described
by weighted linear summation.

Slant dependency of tilt tuning. Thus far, we have examined
tilt tuning for a fixed slant (65°). We previously reported that
tilt selectivity in response to disparity gradients was weak for
small slants and grew monotonically with increasing slant,
whereas tilt preferences remained similar as a function of slant
(Nguyenkim and DeAngelis 2003). Here, we examined the
effect of slant on tilt selectivity defined by other gradient cues,
as summarized in Fig. 12A. In all cue conditions, mean TDI
increased with slant (P � 0.001, main effect of slant, AN-
COVA). There was also a significant interaction between cue
type and the effect of slant (P � 0.01, ANCOVA), consistent
with different slopes of the data in Fig. 12A across cue
conditions.

We also examined the effect of slant on tilt preference,
combining data across cue conditions to gain statistical power.
Comparing slants of 25° and 45°, we found that tilt preferences
were strongly correlated (circular-circular correlation, r �
0.93, P � 0.001, N � 20) and seldom differed by more than
45° from each other (Fig. 12B; Rayleigh test, P � 0.001).
Similarly, when comparing slants of 45° and 65°, we again
found a strong correlation (r � 0.94, P � 0.001, N � 41) with
close agreement between tilt preferences across slants (Fig.
12C; Rayleigh test, P � 0.001). Thus, in all cue conditions,
MT neurons show the most robust tilt tuning for large slants.

Comparison of multiunit and single-unit selectivity. Al-
though 3-D surface orientation selectivity has been described
in multiple visual areas (Hegde and Van Essen 2005; Nguy-
enkim and DeAngelis 2003; Srivastava et al. 2009; Sugihara et
al. 2002; Taira et al. 2000; Treue and Andersen 1996; Tsutsui
et al. 2001, 2002; Xiao et al. 1997), little is known about
whether neurons are organized into functional clusters (e.g.,
columns) according to their tilt or slant tuning. Here we
analyzed the tilt selectivity of MU activity and compared it
with selectivity of SU activity from the same recording sites.
Figure 13, A–D, compares TDI values for MU and SU re-
sponses across the four cue conditions. Significant correlations

between MU and SU TDIs were observed for the combined
condition (r � 0.39, P � 0.001, N � 92), velocity condition
(r � 0.42 P � 0.001, N � 92), and disparity condition (r �
0.37 P � 0.001, N � 92). In contrast, there was no significant
correlation between MU and SU TDIs in the texture condition
(r � 0.11, P � 0.31, N � 92), which may simply reflect the
weak selectivity of MT neurons for texture gradients.

If tilt tuning is clustered in MT, then we would also expect
to see similar tilt preferences for MU and SU activity. Indeed,
the distribution of differences in tilt preference between MU
and SU responses showed a clear peak around zero for all four
cue conditions (Fig. 13, E–H). These distributions were signif-
icantly nonuniform in all four cases (Rayleigh test; combined:
P � 0.001, N � 59; velocity: P � 0.001, N � 51; disparity:
P � 0.01, N � 31; texture: P � 0.001 N � 23). Together, these
data suggest that surface orientation-selective MT neurons are
clustered together based on their tilt selectivity. Although this
analysis does not establish a columnar architecture, it does
suggest that MT neurons are organized systematically based on
selectivity for 3-D orientation.

DISCUSSION

This study demonstrates that single MT neurons signal 3-D
surface orientation (tilt and slant) via selectivity for velocity
and disparity gradients, and to a lesser degree, for texture
gradients. Selectivity is similar in multiunit activity recorded
simultaneously, suggesting that 3-D surface orientation tuning

Fig. 11. Comparison of goodness of fit (R2) values between the linear model
and a nonlinear model. Filled symbols indicate neurons for which the nonlinear
model fits significantly better than the linear model (sequential F-test, P �
0.05). Blue symbols indicate cells that have discrepant tilt preferences between
velocity and disparity (	|V-D| � 90°), whereas red symbols denote cells that
have similar preferences (	|V-D| � 90°). Gray symbols represent cells that
lack significant tilt tuning in either the velocity or disparity condition
(ANOVA, P � 0.05), or cells for which the model fit was not good (R2 � 0.6).

Fig. 12. Slant dependence of tilt tuning. A: mean TDI values are plotted as a
function of slant for each of the 4 cue conditions. B: distribution of the
difference in tilt preferences between slant values of 25° and 45°. The average
difference is 5.7°. C: distribution of the difference in tilt preference between
slant values of 45° and 65°, with a mean value of 3.5°.
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is clustered in MT. Tilt selectivity is generally enhanced when
multiple gradient cues are presented together, indicating that
MT may integrate cues to represent surface structure with
greater fidelity. This occurs despite the fact that tilt preferences
for disparity and velocity gradients are poorly correlated over-
all. In addition, we found that responses to the combined
stimulus, which contains all three gradient cues, are well
approximated by a linear weighted sum of responses to the
individual cues, with disparity and velocity gradients weighted
most heavily. This study provides the first systematic exami-
nation of neural integration of multiple gradient cues to surface
orientation and suggests that area MT contains an early mul-
ticue representation of 3-D surface structure.

Coding of surface orientation based on multiple cues. The
ability of humans to integrate multiple visual cues to improve
performance in surface orientation or shape discrimination
tasks has been well studied psychophysically (Cumming et al.
1993; Cutting and Millard 1984; Hillis et al. 2004; Jacobs
1999; Johnston et al. 1994; Johnston et al. 1993; Knill 2007;
Knill and Saunders 2003; Rogers and Graham 1982; Young et
al. 1993), but the neural basis for these effects has remained
unclear. Although several studies have established that neurons
in both the dorsal and ventral streams are selective for the 3-D
orientation of planar surfaces (Hegde and Van Essen 2005;
Janssen et al. 2000; Nguyenkim and DeAngelis 2003; Sugihara
et al. 2002; Taira et al. 2000; Treue and Andersen 1996;
Tsutsui et al. 2002; Xiao et al. 1997), most of these studies
have examined selectivity to only a single cue type. One
important issue is whether tuning for 3-D surface orientation is
consistent across cues, and only a few studies, including ours,
have addressed this issue. In area CIP, Tsutsui et al. (2002)
measured tilt tuning in response to texture gradients and
disparity gradients, and they found that the majority of cells
had tilt preferences for texture and disparity that were matched
to within 45°. Although some neurons showed large discrep-
ancies, disparity and texture preferences for tilt were strongly
correlated. In IT cortex, Liu et al. (2004) also examined tilt
tuning based on disparity and texture gradients and found a very
similar result. Disparity and texture preferences were strongly
correlated and generally matched within 45°, with occasional
large discrepancies. Thus, at advanced stages along the dorsal and
ventral processing streams, neurons have consistent selectivity for

multiple gradient cues, although it should be noted that neither
Tsutsui et al. (2002) or Liu et al. (2004) measured responses to
combinations of disparity and texture gradients.

In area MT, we found that tilt preferences for disparity and
velocity are frequently mismatched, with no significant overall
correlation between preferences for the two cues. The potential
functional role of neurons with mismatched tilt preferences for
disparity and velocity cues is currently not clear. Thus our
results may imply that area MT is an early stage in the
processing of 3-D orientation cues and that further processing
is needed to achieve greater cue invariance. It should be noted,
however, that Tsutsui et al. (2001) did not find a significant
correlation between tilt preferences in CIP when they com-
pared tilt tuning based on disparity gradients and figural per-
spective cues. Thus, even in CIP, tilt selectivity does not
appear to be aligned for all cues.

A second important issue involves responses to combina-
tions of 3-D orientation cues. Only one previous study, in area
CIP (Tsutsui et al. 2001), has compared responses to individual
gradient cues with responses to combinations of those cues.
Tsutsui et al. (2001) reported that most neurons with tilt tuning
in the combined condition also showed selectivity for disparity
and perspective cues alone. Combined responses were gener-
ally enhanced relative to the single-cue conditions, but an
analysis of signal to noise across conditions was not under-
taken. Our TDI data show that MT neurons generally have a
greater capacity to discriminate between different tilts when
gradient cues are combined, relative to single-cue conditions.
Thus, despite the fact that tilt preferences for disparity and
velocity are frequently misaligned, our data suggest that a
population of MT neurons may allow greater discriminability
of tilt during cue combination.

Our results suggest that area MT makes a modest contribu-
tion to representations of 3-D surface orientation based on
texture gradient cues. Although roughly one-half of MT neu-
rons showed significant tilt selectivity, the tuning was often
quite weak. As a result, texture contributed little to model fits
of the combined responses (Fig. 10). Could the weak tilt tuning
that we observed in the texture condition be explained simply
because texture gradients are a weaker cue to surface orienta-
tion than disparity or velocity gradients? Although we did not
train our animals to discriminate surface orientation in this

Fig. 13. Comparison of tilt selectivity between
multiunit (MU) and single-unit (SU) responses.
A–D: TDI values for MU responses are plotted
against the corresponding values for SU responses
for each of the 4 cue conditions. E–H: distributions
of the difference in tilt preference between MU and
SU responses for each of the 4 cue conditions:
combined, velocity, disparity, and texture (left to
right).

2120 3-D SURFACE PROCESSING IN MT

J Neurophysiol • doi:10.1152/jn.00578.2011 • www.jn.org

 by 10.220.32.247 on A
pril 1, 2017

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


study, the available human psychophysics literature suggests
strongly that texture is not simply a weak cue in our stimuli.
Two psychophysical studies of slant discrimination have shown
that slant sensitivity to texture gradients was two- to threefold
greater than that for disparity gradients when stimulus parameters
were comparable to ours (base slants of 60–70° and a viewing
distance near 57 cm) (Hillis et al. 2004; Knill and Saunders 2003).
In these studies, texture gradients were based on Voronoi patterns,
whereas our texture stimulus was a random element stimulus with
square elements. However, other psychophysical studies have
indicated that sensitivity to slant in texture gradient stimuli is
generally similar across texture types, especially when the base
slant is large (Rosas et al. 2004; Saunders and Backus 2006). Slant
discrimination thresholds in response to random dot stimuli were
approximately the same as those for Voronoi patterns when
discrimination was performed around a base slant comparable to
that of our stimuli (Rosas et al. 2004). Therefore, we conclude that
it is very unlikely that the weak tilt tuning that we observed in the
texture condition for MT neurons was a reflection of the stimulus.

Rather, it seems very likely that neurons in other visual areas
carry substantially greater information about surface orienta-
tion based on texture gradients. For example, CIP neurons
appear to show tilt tuning for texture gradients that is quite
robust, compared with disparity gradients (Tsutsui et al. 2002).
This suggests that texture responses in area CIP do not arise
through inputs from MT, but rather depend on inputs from
other areas such as V3A (Katsuyama et al. 2010; Nakamura et
al. 2001). Thus conducting similar experiments in area V3A is
likely to be of considerable interest.

Linear weighting of surface orientation cues. Our study is
the first to consider the mathematical rule by which neurons
integrate different cues to 3-D surface orientation, and little is
known generally about how neurons combine multiple cues to
represent sensory variables. Morgan et al. (2008) described the
first direct measurements of the neural cue integration rule, in
the context of multisensory (visual-vestibular) integration in
area MSTd. They reported that multisensory responses were
well approximated by a weighted linear sum of single-cue
responses (see also Fetsch et al. 2011). In addition, Ma et al.
(2006, 2008) demonstrated that populations of neurons with
Poisson-like spiking statistics can achieve optimal (Bayesian)
cue integration by simply summing responses to the individual
cue inputs.

Consistent with the results of Morgan et al. and the theory of
Ma et al., we found that weighted linear summation provided
a good description of combined responses to disparity, veloc-
ity, and texture gradients (Fig. 8). Moreover, little predictive
power was gained by incorporating nonlinear response terms
into the model (Fig. 11). One caveat to this finding is that
cue-conflict stimuli were not employed in these experiments,
unlike the study of Morgan et al. (2008). Thus, for neurons
with congruent tilt preferences in the disparity and velocity
conditions, it may be trivial that combined responses are well
predicted by a linear weighted sum, as long as the tuning width
of responses to disparity and velocity cues are similar. Thus the
critical test of the linear model in this study involves neurons
with discrepant tilt preferences for disparity and velocity gra-
dients. Crucially, the linear model provided good predictions of
combined responses for these neurons as well. There was little
dependence of goodness of fit on the difference in tilt prefer-
ence between disparity and velocity conditions, and model

predictions were generally good even when the tilt preference
in the combined condition was intermediate.

Note that we subtracted the mean response (across tilts) from
the tuning curve in each cue condition before performing the
model fits. Hence, our linear model was required to fit the
response modulation in the combined condition with a linear
function of the response modulations in the single-cue conditions,
but the model was not required to account for the mean response
in the combined condition. In general, we observed (e.g., Fig. 2)
that the mean response across tilts in the combined condition was
not much greater than the mean response in the single-cue con-
ditions. Indeed, the average sum of velocity and disparity weights
is 1.38, indicating that MT neurons integrate velocity and dispar-
ity cues in a subadditive manner. This might result from the
operation of some form of response normalization (Britten and
Heuer 1999; Busse et al. 2009; Carandini et al. 1997; Heeger
1992; Ohshiro et al. 2011). Because our model did not incorporate
a normalization operation, we did not require the model to fit the
mean responses across cue conditions.

Although our results are broadly consistent with the theory
of Ma et al. (2006, 2008), most MT neurons did not apply
equal weights to their disparity and velocity inputs. Rather, the
combined response of many neurons was dominated by either
disparity or velocity when tilt preferences for the two cues
were discrepant. This dominance was not simply determined
by the relative strength of tuning in the disparity and velocity
conditions, because there was no significant correlation be-
tween the ratio of disparity to velocity weights and the ratio of
disparity to velocity TDI values from the single-cue responses
(r � �0.02, P � 0.88, N � 41). Thus the factors that
determine the relative dominance of disparity and velocity cues
in the combined response are not clear.

In closing, our findings suggest that area MT plays a role in
combining multiple gradient cues to surface orientation, but
subsequent processing in downstream areas may be needed to
achieve cue invariance. Although MT neurons appear to per-
form a simple weighted sum of inputs from different cues, the
receptive field mechanisms that give rise to gradient selectivity
are less clear. Selectivity for planar surface orientation could
arise from many complex receptive field organizations, and the
nature of the underlying basis functions is unknown. Thus
future studies that directly map receptive field structures un-
derlying 3-D orientation selectivity may be of considerable
value.
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